Преобразование выражений. Подробная теория (2019). Видеоурок «Упрощение выражений Сокращение простых рациональных дробей

Рациональные выражения и дроби — краеугольный пункт всего курса алгебры. Те, кто научатся работать с такими выражениями, упрощать их и раскладывать на множители, по сути смогут решить любую задачу, поскольку преобразование выражений — неотъемлемая часть любого серьёзного уравнения, неравенства и даже текстовой задачи.

В этом видеоуроке мы посмотрим, как грамотно применять формулы сокращённого умножения для упрощения рациональных выражений и дробей. Научимся видеть эти формулы там, где, на первый взгляд, ничего нет. Заодно повторим такой нехитрый приём, как разложение квадратного трёхчлена на множители через дискриминант.

Как вы уже наверняка догадались по формулам за моей спиной, сегодня мы будем изучать формулы сокращенного умножения, а, точнее, не сами формулы, а их применение для упрощения и сокращения сложных рациональных выражений. Но, прежде чем переходить к решению примеров, давайте познакомимся ближе с этими формулами или вспомним их:

  1. ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  2. ${{\left(a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ — квадрат суммы;
  3. ${{\left(a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ — квадрат разности;
  4. ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  5. ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

Еще хотел бы отметить, что наша школьная система образования устроена таким образом, что именно с изучением этой темы, т.е. рациональных выражений, а также корней, модулей у всех учеников возникает одна и та же проблема, которую я сейчас объясню.

Дело в том, что в самом начале изучения формул сокращенного умножения и, соответственно, действий по сокращению дробей (это где-то 8 класс) учителя говорят что-то следующее: «Если вам что-то непонятно, то вы не переживайте, мы к этой теме еще вернемся неоднократно, в старших классах так точно. Мы это еще разберем». Ну а затем на рубеже 9-10 класса те же самые учителя объясняют тем же самым ученикам, которые так и не знают, как решать рациональные дроби, примерно следующее: «А где вы были предыдущие два года? Это же изучалось на алгебре в 8 классе! Чего тут может быть непонятного? Это же так очевидно!».

Однако обычным ученикам от таких объяснений нисколько не легче: у них как была каша в голове, так и осталась, поэтому прямо сейчас мы разберем два простых примера, на основании которых и посмотрим, каким образом в настоящих задачах выделять эти выражения, которые приведут нас к формулам сокращенного умножения и как потом применять это для преобразования сложных рациональных выражений.

Сокращение простых рациональных дробей

Задача № 1

\[\frac{4x+3{{y}^{2}}}{9{{y}^{4}}-16{{x}^{2}}}\]

Первое, чему нам нужно научиться — выделять в исходных выражениях точные квадраты и более высокие степени, на основании которых мы сможем потом применять формулы. Давайте посмотрим:

Перепишем наше выражение с учетом этих фактов:

\[\frac{4x+3{{y}^{2}}}{{{\left(3{{y}^{2}} \right)}^{2}}-{{\left(4x \right)}^{2}}}=\frac{4x+3{{y}^{2}}}{\left(3{{y}^{2}}-4x \right)\left(3{{y}^{2}}+4x \right)}=\frac{1}{3{{y}^{2}}-4x}\]

Ответ: $\frac{1}{3{{y}^{2}}-4x}$.

Задача № 2

Переходим ко второй задаче:

\[\frac{8}{{{x}^{2}}+5xy-6{{y}^{2}}}\]

Упрощать тут нечего, потому что в числителе стоит константа, но я предложил эту задачу именно для того, чтобы вы научились раскладывать на множители многочлены, содержащие две переменных. Если бы вместо него был написанный ниже многочлен, как бы мы разложили его?

\[{{x}^{2}}+5x-6=\left(x-... \right)\left(x-... \right)\]

Давайте решим уравнение и найдем $x$, которые мы сможем поставить вместо точек:

\[{{x}^{2}}+5x-6=0\]

\[{{x}_{1}}=\frac{-5+7}{2}=\frac{2}{2}=1\]

\[{{x}_{2}}=\frac{-5-7}{2}=\frac{-12}{2}=-6\]

Мы можем переписать трехчлен следующим образом:

\[{{x}^{2}}+5xy-6{{y}^{2}}=\left(x-1 \right)\left(x+6 \right)\]

С квадратным трехчленом мы работать научились — для этого и нужно было записать этот видеоурок. А что делать, если кроме $x$ и константы присутствует еще $y$? Давайте рассмотрим их как еще одни элементы коэффициентов, т.е. перепишем наше выражение следующим образом:

\[{{x}^{2}}+5y\cdot x-6{{y}^{2}}\]

\[{{x}_{1}}=\frac{-5y+7y}{2}=y\]

\[{{x}_{2}}=\frac{-5y-7y}{2}=\frac{-12y}{2}=-6y\]

Запишем разложение нашей квадратной конструкции:

\[\left(x-y \right)\left(x+6y \right)\]

Итого если мы вернемся к исходному выражению и перепишем его с учетом изменений, то получим следующее:

\[\frac{8}{\left(x-y \right)\left(x+6y \right)}\]

Что нам дает такая запись? Ничего, потому что его не сократить, оно ни на что не умножается и не делится. Однако как только эта дробь окажется составной частью более сложного выражения, подобное разложение окажется кстати. Поэтому как только вы видите квадратный трехчлен (неважно, отягощен он дополнительными параметрами или нет), всегда старайтесь разложить его на множители.

Нюансы решения

Запомните основные правила преобразования рациональных выражений:

  • Все знаменатели и числители необходимо раскладывать на множители либо через формулы сокращенного умножения, либо через дискриминант.
  • Работать нужно по такому алгоритму: когда мы смотрим и пытаемся выделить формулу сокращенного умножения, то, прежде всего, пытаемся все перевести в максимально возможную степень. После этого выносим за скобку общую степень.
  • Очень часто будут встречаться выражения с параметром: в качестве коэффициентов будут возникать другие переменные. Их мы находим по формуле квадратного разложения.

Таким образом, как только вы видите рациональные дроби, первое, что нужно сделать — это разложить и числитель, и знаменатель на множители (на линейные выражения), при этом мы используем формулы сокращенного умножения или дискриминант.

Давайте посмотрим на пару таких рациональных выражений и попробуем их разложить на множители.

Решение более сложных примеров

Задача № 1

\[\frac{4{{x}^{2}}-6xy+9{{y}^{2}}}{2x-3y}\cdot \frac{9{{y}^{2}}-4{{x}^{2}}}{8{{x}^{3}}+27{{y}^{3}}}\]

Переписываем и стараемся разложить каждое слагаемое:

Давайте перепишем все наше рациональное выражение с учетом этих фактов:

\[\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{{{\left(3y \right)}^{2}}-{{\left(2x \right)}^{2}}}{{{\left(2x \right)}^{3}}+{{\left(3y \right)}^{3}}}=\]

\[=\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{\left(3y-2x \right)\left(3y+2x \right)}{\left(2x+3y \right)\left({{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}} \right)}=-1\]

Ответ: $-1$.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

Давайте рассмотрим все дроби.

\[{{x}^{2}}+4-4x={{x}^{2}}-4x+2={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Перепишем всю конструкцию с учетом изменений:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+{{2}^{2}} \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{3\cdot \left(-1 \right)}{2\cdot \left(x-2 \right)\cdot \left(-1 \right)}=\frac{3}{2\left(x-2 \right)}\]

Ответ: $\frac{3}{2\left(x-2 \right)}$.

Нюансы решения

Итак, чему мы только что научились:

  • Далеко не каждый квадратный трехчлен раскладывается на множители, в частности, это относится к неполному квадрату суммы или разности, которые очень часто встречаются как части кубов суммы или разности.
  • Константы, т.е. обычные числа, не имеющие при себе переменных, также могут выступать активными элементами в процессе разложения. Во-первых, их можно выносить за скобки, во-вторых, сами константы могут быть представимы в виде степеней.
  • Очень часто после разложения всех элементов на множители возникают противоположные конструкции. Сокращать эти дроби нужно крайне аккуратно, потому что при из зачеркивании либо сверху, либо снизу возникает дополнительный множитель $-1$ — это как раз и есть следствие того, что они противоположны.

Решение сложных задач

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{2}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Рассмотрим каждое слагаемое отдельно.

Первая дробь:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

\[{{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Весь числитель второй дроби мы можем переписать следующим образом:

\[{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}\]

Теперь посмотрим на знаменатель:

\[{{b}^{2}}+4b+4={{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем все рациональное выражение с учетом вышеизложенных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Ответ: $\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}$.

Нюансы решения

Как мы еще раз убедились, неполные квадраты суммы либо неполные квадраты разности, которые часто встречаются в реальных рациональных выражениях, однако не стоит их пугаться, потому что после преобразования каждого элемента они практически всегда сокращаются. Кроме того, ни в коем случае не стоит бояться больших конструкций в итогом ответе — вполне возможно, что это не ваша ошибка (особенно, если все разложено на множители), а это автор задумал такой ответ.

В заключение хотелось бы разобрать еще один сложных пример, который уже не относится напрямую к рациональным дробям, однако он содержит все то, что ждет вас на настоящих контрольных и экзаменах, а именно: разложение на множители, приведение к общему знаменателю, сокращение подобных слагаемых. Вот именно этим мы сейчас и займемся.

Решение сложной задачи на упрощение и преобразование рациональных выражений

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала рассмотрим и раскроем первую скобку: в ней мы видим три отдельных дроби с разными знаменателями поэтому первое, что нам необходимо сделать — это привести все три дроби к общему знаменателю, а для этого каждый из них следует разложить на множители:

\[{{x}^{2}}+2x+4={{x}^{2}}+2\cdot x+{{2}^{2}}\]

\[{{x}^{2}}-8={{x}^{3}}-{{2}^{2}}=\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)\]

Перепишем всю нашу конструкцию следующим образом:

\[\frac{x}{{{x}^{2}}+2x+{{2}^{2}}}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{3}}+8-\left({{x}^{2}}+2x+{{2}^{2}} \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{{{x}^{2}}-4x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Это результат вычислений из первой скобки.

Разбираемся со второй скобкой:

\[{{x}^{2}}-4={{x}^{2}}-{{2}^{2}}=\left(x-2 \right)\left(x+2 \right)\]

Перепишем вторую скобку с учетом изменений:

\[\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2}{x-2}=\frac{{{x}^{2}}+2\left(x+2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Теперь запишем всю исходную конструкцию:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ответ: $\frac{1}{x+2}$.

Нюансы решения

Как видите, ответ получился вполне вменяемый. Однако обратите внимание: очень часто при таких масштабных вычислениях, когда единственная переменная оказывается лишь в знаменателе, ученики забывают, что это знаменатель и он должен стоял внизу дроби и пишут это выражение в числитель — это грубейшая ошибка.

Кроме того, хотел бы обратить ваше отдельное внимание на то, как оформляются такие задачи. В любых сложных вычислениях все шаги выполняются по действиям: сначала отдельно считаем первую скобку, потом отдельно вторую и лишь в конце мы объединяем все части и считаем результат. Таким образом мы страхуем себя от глупых ошибок, аккуратно записываем все выкладки и при этом нисколько не тратим лишнего времени, как это может показаться на первый взгляд.

§ 1 Понятие упрощения буквенного выражения

В этом занятии познакомимся с понятием «подобные слагаемые» и на примерах научимся выполнять приведение подобных слагаемых, упрощая, таким образом, буквенные выражения.

Выясним смысл понятия «упрощение». Слово «упрощение» образовано от слова «упрости́ть». Упрости́ть - значит сделать простым, проще. Следовательно, упростить буквенное выражение - это сделать его более коротким, с минимальным количеством действий.

Рассмотрим выражение 9х + 4х. Это буквенное выражение, которое является суммой. Слагаемые здесь представлены в виде произведений числа и буквы. Числовой множитель таких слагаемых называется коэффициентом. В этом выражении коэффициентами будут числа 9 и 4. Обратите внимание, множитель, представленный буквой - одинаковый в обоих слагаемых данной суммы.

Вспомним распределительный закон умножения:

Чтобы умножить сумму на число, можно умножить на это число каждое слагаемое и полученные произведения сложить.

В общем виде записывается так: (а + b) ∙ с = ac + bc.

Этот закон выполняется в обе стороны ac + bc = (а + b) ∙ с

Применим его к нашему буквенному выражению: сумма произведений 9х и 4х равна произведению, первый множитель которого равен сумме 9 и 4, второй множитель - х.

9 + 4 = 13, получается 13х.

9х + 4 х = (9 + 4)х = 13х.

Вместо трех действий в выражении осталось одно действие - умножение. Значит, мы сделали наше буквенное выражение проще, т.е. упрости́ли его.

§ 2 Приведение подобных слагаемых

Слагаемые 9х и 4х отличаются только своими коэффициентами - такие слагаемые называют подобными. Буквенная часть у подобных слагаемых одинаковая. К подобным слагаемым относятся также числа и равные слагаемые.

Например, в выражении 9а + 12 - 15 подобными слагаемыми будут числа 12 и -15, а в сумме произведения 12 и 6а, числа 14 и произведения 12 и 6а (12 ∙6а + 14 + 12 ∙ 6а) подобными будут равные слагаемые, представленные произведением 12 и 6а.

Важно отметить, что слагаемые, у которых равны коэффициенты, а буквенные множители различны, подобными не являются, хотя к ним полезно иногда применить распределительный закон умножения, например, сумма произведений 5х и 5у равна произведению числа 5 и суммы х и у

5х + 5y = 5(x + y).

Упрости́м выражение -9а + 15а - 4 + 10.

Подобными слагаемыми в данном случае являются слагаемые -9а и 15а, так как они отличаются только своими коэффициентами. Буквенный множитель у них одинаковый, также подобными являются слагаемые -4 и 10, так как являются числами. Складываем подобные слагаемые:

9а + 15а - 4 + 10

9а + 15а = 6а;

Получаем: 6а + 6.

Упрощая выражение, мы находили суммы подобных слагаемых, в математике это называют приведением подобных слагаемых.

Если приведение подобных слагаемых вызывает затруднение, можно придумать к ним слова и складывать предметы.

Например, рассмотрим выражение:

На каждую букву берем свой предмет: b-яблоко, с-груша, тогда получится: 2 яблока минус 5 груш плюс 8 груш.

Можем из яблок вычесть груши? Конечно, нет. А вот к минус 5 грушам прибавить 8 груш можем.

Приведем подобные слагаемые -5 груш + 8 груш. У подобных слагаемых буквенная часть одинаковая, поэтому при приведении подобных слагаемых достаточно выполнить сложение коэффициентов и к результату дописать буквенную часть:

(-5 + 8) груш - получится 3 груши.

Возвращаясь к нашему буквенному выражению, имеем -5 с + 8с = 3с. Таким образом, после приведения подобных слагаемых получим выражение 2b + 3с.

Итак, на этом занятии Вы познакомились с понятием «подобные слагаемые» и научились упрощать буквенные выражения путем приведения подобных слагаемых.

Список использованной литературы:

  1. Математика. 6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича//автор-составитель Л.А. Топилина. Мнемозина 2009.
  2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И.Зубарева, А.Г. Мордкович.- М.: Мнемозина, 2013.
  3. Математика. 6 класс: учебник для общеобразовательных учреждений/Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др./по редакцией Г.В. Дорофеева, И.Ф. Шарыгина; Рос.акад.наук, Рос.акад.образования. М.: «Просвещение», 2010.
  4. Математика. 6 класс: учеб.для общеобразоват.учреждений/Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.:Мнемозина, 2013.
  5. Математика. 6 кл.:учебник/Г.К. Муравин, О.В. Муравина. – М.: Дрофа, 2014.

Использованные изображения:

Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.

Шаги

Важные определения

  1. Подобные члены . Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.

    • Например, 3x 2 и 4x 2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x 2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.
  2. Разложение на множители . Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.

    • Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.
    • Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x) .
    • Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.
  3. Запомните и соблюдайте порядок выполнения операций во избежание ошибок.

    • Скобки
    • Степень
    • Умножение
    • Деление
    • Сложение
    • Вычитание

Приведение подобных членов

  1. Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и так далее) можно решить (упростить) всего за несколько шагов.

    • Например, упростите выражение 1 + 2x - 3 + 4x .
  2. Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены).

    • Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 - это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.
  3. Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение.

    • 2x + 4x =
    • 1 - 3 = -2
  4. Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному.

    • В нашем примере: 1 + 2x - 3 + 4x = 6х - 2 , то есть исходное выражение упрощено и с ним легче работать.
  5. Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций.

    • Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку.
      • 5(3x-1) + x((2x)/(2)) + 8 - 3x
      • 15x - 5 + x(x) + 8 - 3x
      • 15x - 5 + x 2 + 8 - 3x. Теперь , когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены.
      • x 2 + (15x - 3x) + (8 - 5)
      • x 2 + 12x + 3

Вынесение множителя за скобки

  1. Найдите наибольший общий делитель (НОД) всех коэффициентов выражения. НОД - это наибольшее число, на которое делятся все коэффициенты выражения.

    • Например, рассмотрим уравнение 9x 2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.
  2. Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении.

    • В нашем примере разделите каждый член выражения на 3.
      • 9x 2 /3 = 3x 2
      • 27x/3 = 9x
      • -3/3 = -1
      • Получилось выражение 3x 2 + 9x - 1 . Оно не равно исходному выражению.
  3. Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД.

    • В нашем примере: 9x 2 + 27x - 3 = 3(3x 2 + 9x - 1)
  4. Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя).

    • Например, рассмотрим дробное выражение (9x 2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение.
      • Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x 2 + 9x - 1))/3
      • Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить, и вы получите выражение: (3x 2 + 9x – 1)/1
      • Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x 2 + 9x - 1 .

Дополнительные методы упрощения

  1. Упрощение дробных выражений. Как отмечалось выше, если и в числителе, и в знаменателе присутствуют одинаковые члены (или даже одинаковые выражения), то их можно сократить. Для этого нужно вынести за скобки общий множитель у числителя или у знаменателя, или как у числителя, так и у знаменателя. Или можно разделить каждый член числителя на знаменатель и таким образом упростить выражение.

    • Например, рассмотрим дробное выражение (5x 2 + 10x + 20)/10. Здесь просто разделите каждый член числителя на знаменатель (10). Но учтите, что член 5x 2 не делится на 10 нацело (так как 5 меньше 10).
      • Поэтому запишите упрощенное выражение так: ((5x 2)/10) + x + 2 = (1/2)x 2 + x + 2.
  2. Упрощение подкоренных выражений. Выражения, стоящие под знаком корня, называются подкоренными выражениями. Они могут быть упрощены через их разложение на соответствующие множители и последующий вынос одного множителя из-под корня.

    • Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня.
      • √(90)
      • √(9×10)
      • √(9)×√(10)
      • 3×√(10)
      • 3√(10)
  3. Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются; в случае деления членов с одним основанием их степени вычитаются.

    • Например, рассмотрим выражение 6x 3 × 8x 4 + (x 17 /x 15). В случае умножения сложите степени, а в случае деления – вычтите их.
      • 6x 3 × 8x 4 + (x 17 /x 15)
      • (6 × 8)x 3 + 4 + (x 17 - 15)
      • 48x 7 + x 2
    • Далее приведено объяснение правила умножения и деления членов со степенью.
      • Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x 3 = x × x × x и x 5 = x × x × x × x × x, то x 3 × x 5 = (x × x × x) × (x × x × x × x × x), или x 8 .
      • Аналогично, деление членов со степенями равносильно делению членов на самих себя. x 5 /x 3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x 2 .

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

В начале урока мы повторим основные свойства квадратных корней, а затем рассмотрим несколько сложных примеров на упрощение выражений, содержащих квадратные корни.

Тема: Функция . Свойства квадратного корня

Урок: Преобразование и упрощение более сложных выражений с корнями

1. Повторение свойств квадратных корней

Вкратце повторим теорию и напомним основные свойства квадратных корней.

Свойства квадратных корней:

1. , следовательно, ;

3. ;

4. .

2. Примеры на упрощение выражений с корнями

Перейдем к примерам использования этих свойств.

Пример 1. Упростить выражение .

Решение. Для упрощения число 120 необходимо разложить на простые множители:

Квадрат суммы раскроем по соответствующей формуле:

Пример 2. Упростить выражение .

Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: ().

Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:

Ответ. при.

Пример 3. Упростить выражение .

Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

После сокращения дроби применяем формулу разности квадратов.

3. Пример на избавление от иррациональности

Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .

Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:

б) выполним аналогичные действия:

4. Пример на доказательство и на выделение полного квадрата в сложном радикале

Пример 5. Докажите равенство .

Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

. Раскроем скобки по формуле квадрата суммы:

, получили верное равенство.

Доказано.

Пример 6. Упростить выражение .

Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго - 1.

Подставим это выражение под корень.

В продолжение темы:
Осаго

Слайд 2 Хорошая речь – важное условие развития личности ребенка. Чем богаче и правильнее у ребенка речь, тем легче высказывать ему свои мысли, тем шире его возможности...

Новые статьи
/
Популярные